
README of ENcyclopedia of TRAnscription Factors in Bacteria and Archaea genomes

(ENTRAF) version 2.0.

There are two forms, to search into the database:

1. Input the keyword for the transcription factor: AraC/XylS, MetJ, LacI/GalR or Bacillus subtilis

2. Display the Transcription factor (protein) ID

ENcy Bac	yclopedia of T teria and Arch	RAnscription Factors i Iaea (EnTRaF)	Home Experimental Evidences References FAQ
ld Entra	af	Subunits	Sequence
Global Amino- Specifi This re with SA repress	ame ECOLI ism ichia coli (strain K12) Function -acid metabolism is Function gulatory protein, when combil AM (S-adenosylmethionine) ses the expression of the	Homodimer. Ligand methyl-5*thioadenosine; adenine	MAEWSGEYIS PYAEHOKKSE QVKKITVSIP LKVLKILTDE RTRRQVNNLR HATNSELLCE AFLHAFTGQP LPDDADLRKE RSDEIPEAAK EIMREMGINP ETWEY
	onine regulon a of enzymes inv 1 synthesis. It is also autoregu		
in SAM	1 synthesis. It is also autoregu	ated.	≎ 1: MET REPR ≎ A ≎ 0
in SAM	1 synthesis. It is also autoregu শল্ব 🛛 হ	iated. Sequence of https://siphaf * Chain ABAGGEVTIST/ABHIGKS222 ABAGGEVTIST/ABHIGKS22 ABAGGEVTIST/ABHIGKS22 ABAGGEVTIST/ABHIGKS22 ABAGGEVTIST/ABHIGKS22 ABAGGEVTIST/ABHIGKS22 ABAGGEVTIST/ABHIGKS22 ABAGGEVTIST/ABHIGKS22 ABAGGEVTIST/ABHIGKS22 ABAGGEVTIST/ABHIGKS2 ABAGGEVTIST/ABHIGKS2 ABAGGEVTIST/ABHIGKS2 ABAGGEVTIST/ABHIGKS2 ABAGGEVTIST/ABHIGKS2 ABAGGEVTIST/A	11 S1 Structure Tools
in SAM	1 synthesis. It is also autoregu PG E t https://alphafold.ebi.ac.ulv/	tate Tree Sequence of https://alphaf © Chain https://alphaf © Chain https://alphaf.ck.22 Alphaficter/15 ¹¹ /Alphafick.25 ²¹ / ₂ /kr/lkr/lkr/lkr/lkr/lkr/lkr/lkr/lkr/lkr/	1 1 21 81 Structure Tools DERTRRVVNLRHATNSELLCEAFLHAFTGOPLPDDADLEKERSDEIPE Structure Structure Tools
in SAM	1 synthesis. It is also autoregu 16 D S 16 Nttps://alphafold.ebi.ac.uk/ V Model 1	ated. Sequence of https://alphal • Chain image:contribution image:contribution Image:contribution	Structure Tools Structure Tools Structure Tools Structure Tools Structure Tools Structure Tools
in SAM	1 synthesis. It is also autoregu PG E t https://alphafold.ebi.ac.ulv/	tate Tree ABENGGEVIS ¹⁷ /ABENGKKSEQVKKITVSIPLKVLKII AAKEINRENGINPETYEY ©	TOERTRROVINILABILITISELLICERT FLAAFTOOR POODDURKERSOETER
in SAM	t synthesis. It is also autoregu tel trips://alphafold.ebi.ac.uk/ Model 1 Model 853 elements	tate Tree AARGINREMGINPETHEY ARGINREMGINPETHEY	TDEŘÍTRROVINILABŘATINSELI.CEŘÍFLIAFTOOPŘÍPOLADILSKÉŘODETPE V Structure Tools V Structur

For this entry (MetJ_Ecoli) we display the protein ID (internal database identificator); entry name; Organism; Global function; Specific function; Subunits; Ligand molecule; protein sequence; alpha fold model; Gene ontology; bacterial or archaeal taxonomy and external links to PDB, PubMed and Uniprot databases.

	genoma agg	scExplorer 🐁 Downloads 🕒 Algorithm 😵 Boxy SVG Editor 🔝 Rickettsia::Taxor	
Entraf		Home Experimental E	vidences References FAQ
<u>م</u>	Ti State Tree	Sequence of https://alphaf ÷ Chain ÷ 1:BIFUNCTI ÷ A ÷	The structure Tools
₽ta v https://alphafold.ebi.ac.u	v n 💿	91 101 111 121 131 141 151 151 KRCKPTNEKMPDSEWVDLITEYIDKNFTEKLTLESLADICHGSPYHMHRTFKKIKGITLVEYIQQVRVHAAKKYLLQTNKAIG	
T Model 1	D	181 191 201 211 AICVGIANAPYFITLFKKKTGQTPARFRQMSKMEETYNGNK	https://alphafold.ebi.ac.uk/files/AF
 Model 1705 elements 	0		¢ Type Model …
Polymer 1705 elements	0		Nothing Focused S
Cartoon	Ō (0)	1	دم ۲ Measurements
		5	辛 Headdeneers
			8
			Quick Styles Apply Representation
		Les Trais	Default Cartoon Spacefill Surface
			Apply Style
			Default Illustrative
			☐ Preset + Add 퍞 ⊙
			Polymer Cartoon (1)
			Export Models ■
			Export Animation
		15:47:38 Created Polymer in 0ms.	a ⊕ Export Geometry
		15:47:38 Created Cartoon in 23ms.	

و ۹ ۹ – G ۵ _ا ۵	ENE Ontology	Taxonomy	Useful links	
id GO GO:0003677 GO:0003677 GO:0003677 GO:0003700 GO:0003700 GO:0005829 GO:009086 GO:0045892 GO:0045892	Description DNA binding DNA binding DNA-binding transcription factor activity DNA-binding transcription factor activity DNA-binding transcription factor activity cytosol methionine biosynthetic process negative regulation of DNA-templated transcription negative regulation of DNA-templated transcription	 Phylum: Pseudomonadota Order: Enterobacterales Family: Enterobacteriaceae Class: Gammaproteobacteria Genus: Escherichia 	PBD link link link link link link link link	
			PubMed	

 Alternatively, for advance searches; we included diverse fields to be considered: Gene ontology; Global regulation and/or taxonomy. For instance, for the term "bent DNA-binding", we get the following result:

 C : एग्स 🔒 entraf.iimas.unam.mx/advan easyROC (३) ggplot2 Based Plots (०) GitHub - u-genoma/ 			トロン C C C C A	± ■ ≡ >
Entraf	Home Experimental Evidence	es References f	FAQ	

ENTRAF053 Procariota Histon_LHS Escherichia Coil (striam) Escherichia Coil (striam) Fischerichia Coil (striam) Histon_LHS Signatulation a compaction. HSS bistightly to ATrich dsDNA a inhibits transcription. Bis upstream a downstream of initiating RNA polymerase, trapping it in a loop a preventing transcription. Bis to hureds of sites, approximately half its bing sites are in non-coding DNA, which only accounts for about 10% of the genome. Many of these loci were horizontally transferred (HTG). Vitis offers the selective advantage of silencing foreign DNA while keeping it in the genome in case of need. Suppresses transcription at many intragenic sites as well as transcriptions, non-coding RNAs genome-wide. Repression of HTG by H-NS is thought to allow their DNA to evolve faster than non-H-NS-bou regiuntes, and coil (striam) the selective advantage of silencing foreign DNA while keeping it in the genome in case of need. Suppresses transcription of the transcriptional regulatory networks. A subset of H-NS/StpA-complex. The protein forms 2 clusters in the nucleoid which gather hns-bou loci together, bridging non-contiguous DNA, a causes DNA substantial coensation. Bis DNA better at low temperatures than at 37 degrees Clesius; AT-rich sites nucleate H-NS bing, further DNA-bing is cooperativity decreases with rising temperature. Transcriptional repression can be inhibited by dominant-negative mutants of StpA or tesef. May effect transcriptional elogation. Can increase translational efficiency of mRNA with suboptimal Shine-Dalgamo sequences. Plays a role in the thermal control of pilia adhesive curil finibriae production, by ueing transcription of the crRNA precursor; its repression is antagonized by Levo. Dis preferentially to the upstream region of is to wa geen recognizing two segements of DNA on bob	idEntraf 🕴	Kingdom 🌢	Family 🍦	Organism 🂧	Specific Function
	ENTRAF0535	Procariota	Histone_HNS	coli (strain	organization a compaction. H-NS bis tightly to AT-rich dsDNA a inhibits transcription. Bis upstream a downstream of initiating RNA polymerase, trapping it in a loop a preventing transcription. Bis to hureds of sites, approximately half its bing sites are in non-coding DNA, which only accounts for about 10% of the genome. Many of these loci were horizontally transferred (HTG); this offers the selective advantage of silencing foreign DNA while keeping it in the genome in case of need. Suppresses transcription at many intragenic sites as well as transcription of spurious, non-coding RNAs genome-wide. Repression of HTG by H-NS is thought to allow their DNA to evolve faster than non-H-NS-bour regions, a facilitates integration of HTG inby H-NS is thought to allow their DNA to evolve faster than non-H-NS-bour regions, a facilitates integration of HTG inb transcriptional regulatory networks. A subset of H- NS/StpA-regulated genes also require Hha (a/or Cnu, ydgT) for repression; Hha a Cnu increase the number of genes DNA bou by H-NS/StpA a may also modulate the oligomerization of the H-NS/StpA-complex. The protein forms 2 clusters in the nucleoid which gather hns-bou loci together, bridging non-contiguous DNA, a causes DNA bing, further DNA-bing is cooperative a this cooperativity decreases with rising temperature. Transcriptional repression can be inhibited by dominant-negative mutants of StpA or itself. May effect transcriptional elongation. Can increase translational efficiency of mRNA with suboptimal Shine-Dalgarno sequences. Plays a role in the thermal control of pill a adhesive curli fimbriae production, by lucing transcription of tis own gene recognizing two segments of DNA on both sides of a be centered arou -150. Overexpression suppresses secY24, a temperature-

And as in the original search, the protein record can be displayed to check all the functional information.